TY - CHAP
T1 - Transferrin Saturation
T2 - A Body Iron Biomarker
AU - Elsayed, M. E.
AU - Sharif, M. U.
AU - Stack, A. G.
N1 - Publisher Copyright:
© 2016 Elsevier Inc.
PY - 2016
Y1 - 2016
N2 - Iron is an essential element for several metabolic pathways and physiological processes. The maintenance of iron homeostasis within the human body requires a dynamic and highly sophisticated interplay of several proteins, as states of iron deficiency or excess are both potentially deleterious to health. Among these is plasma transferrin, which is central to iron metabolism not only through iron transport between body tissues in a soluble nontoxic form but also through its protective scavenger role in sequestering free toxic iron. The transferrin saturation (TSAT), an index that takes into account both plasma iron and its main transport protein, is considered an important biochemical marker of body iron status. Its increasing use in many health systems is due to the increased availability of measurement methods, such as calorimetry, turbidimetry, nephelometry, and immunochemistry to estimate its value. However, despite its frequent use in clinical practice to detect states of iron deficiency or iron overload, careful attention should be paid to the inherent limitations of the test especially in certain settings such as inflammation in order to avoid misinterpretation and erroneous conclusions. Beyond its usual clinical use, an emerging body of evidence has linked TSAT levels to major clinical outcomes such as cardiovascular mortality. This has the potential to extend the utility of TSAT index to risk stratification and prognostication. However, most of the current evidence is mainly driven by observational studies where the risk of residual confounding cannot be fully eliminated. Indeed, future efforts are required to fully explore this capability in well-designed clinical trials or prospective large-scale cohorts.
AB - Iron is an essential element for several metabolic pathways and physiological processes. The maintenance of iron homeostasis within the human body requires a dynamic and highly sophisticated interplay of several proteins, as states of iron deficiency or excess are both potentially deleterious to health. Among these is plasma transferrin, which is central to iron metabolism not only through iron transport between body tissues in a soluble nontoxic form but also through its protective scavenger role in sequestering free toxic iron. The transferrin saturation (TSAT), an index that takes into account both plasma iron and its main transport protein, is considered an important biochemical marker of body iron status. Its increasing use in many health systems is due to the increased availability of measurement methods, such as calorimetry, turbidimetry, nephelometry, and immunochemistry to estimate its value. However, despite its frequent use in clinical practice to detect states of iron deficiency or iron overload, careful attention should be paid to the inherent limitations of the test especially in certain settings such as inflammation in order to avoid misinterpretation and erroneous conclusions. Beyond its usual clinical use, an emerging body of evidence has linked TSAT levels to major clinical outcomes such as cardiovascular mortality. This has the potential to extend the utility of TSAT index to risk stratification and prognostication. However, most of the current evidence is mainly driven by observational studies where the risk of residual confounding cannot be fully eliminated. Indeed, future efforts are required to fully explore this capability in well-designed clinical trials or prospective large-scale cohorts.
KW - Biomarkers
KW - Iron
KW - Transferrin
KW - Transferrin saturation
UR - http://www.scopus.com/inward/record.url?scp=84965009552&partnerID=8YFLogxK
U2 - 10.1016/bs.acc.2016.03.002
DO - 10.1016/bs.acc.2016.03.002
M3 - Chapter
C2 - 27346617
AN - SCOPUS:84965009552
T3 - Advances in Clinical Chemistry
SP - 71
EP - 97
BT - Advances in Clinical Chemistry
PB - Academic Press Inc.
ER -