TY - JOUR
T1 - Upper limb discomfort profile due to intermittent isometric pronation torque at different postural combinations of the shoulder-arm system
AU - Mukhopadhyay, Prabir
AU - O'Sullivan, Leonard W.
AU - Gallwey, Timothy J.
PY - 2009
Y1 - 2009
N2 - Twenty-seven right-handed male university students participated in this study, which comprised a full factorial model consisting of three forearm rotation angles (60% prone and supine and neutral range of motion), three elbow angles (45°, 90° and 135°), three upper arm angles (45% flexion/extension and neutral), one exertion frequency (15 per min) and one level of pronation torque (20% maximum voluntary contraction (MVC) relative to MVC at each articulation). Discomfort rating after the end of each 5 min treatment was recorded on a visual analogue scale. Results of a repeated measures analysis of covariance on discomfort score, with torque endurance time as covariate, indicated that none of the factors was significant including torque endurance time (p = 0.153). An initial data collection phase preceded the main experiment in order to ensure that participants exerted exactly 20% MVC of the particular articulation. In this phase MVC pronation torque was measured at each articulation. The data revealed a significant forearm rotation angle effect (p = 0.001) and participant effect (p = 0.001). Of the two-way interactions, elbow*participant (p = 0.004), forearm*participant (p = 0.001) and upper arm*participant (p = 0.005) were the significant factors. Electromyographic activity of the pronator teres and biceps brachii muscles revealed no significant change in muscle activity in most of the articulations. Industrial jobs involving deviated upper arm postures are typical in industry but have a strong association with injury. Data from this study will enable better understanding of the effects of deviated upper arm postures on musculoskeletal disorders and can also be used to identify and control high-risk tasks in industry.
AB - Twenty-seven right-handed male university students participated in this study, which comprised a full factorial model consisting of three forearm rotation angles (60% prone and supine and neutral range of motion), three elbow angles (45°, 90° and 135°), three upper arm angles (45% flexion/extension and neutral), one exertion frequency (15 per min) and one level of pronation torque (20% maximum voluntary contraction (MVC) relative to MVC at each articulation). Discomfort rating after the end of each 5 min treatment was recorded on a visual analogue scale. Results of a repeated measures analysis of covariance on discomfort score, with torque endurance time as covariate, indicated that none of the factors was significant including torque endurance time (p = 0.153). An initial data collection phase preceded the main experiment in order to ensure that participants exerted exactly 20% MVC of the particular articulation. In this phase MVC pronation torque was measured at each articulation. The data revealed a significant forearm rotation angle effect (p = 0.001) and participant effect (p = 0.001). Of the two-way interactions, elbow*participant (p = 0.004), forearm*participant (p = 0.001) and upper arm*participant (p = 0.005) were the significant factors. Electromyographic activity of the pronator teres and biceps brachii muscles revealed no significant change in muscle activity in most of the articulations. Industrial jobs involving deviated upper arm postures are typical in industry but have a strong association with injury. Data from this study will enable better understanding of the effects of deviated upper arm postures on musculoskeletal disorders and can also be used to identify and control high-risk tasks in industry.
KW - Extension
KW - Flexion
KW - Pronation
KW - Pronation torque
KW - Supination
KW - Upper arm
UR - http://www.scopus.com/inward/record.url?scp=68349158698&partnerID=8YFLogxK
U2 - 10.1080/00140130802396438
DO - 10.1080/00140130802396438
M3 - Article
C2 - 19296327
AN - SCOPUS:68349158698
SN - 0014-0139
VL - 52
SP - 584
EP - 600
JO - Ergonomics
JF - Ergonomics
IS - 5
ER -