TY - GEN
T1 - Velocity field measurements in leading edge wing compartments
AU - Egan, V.
AU - Newport, D. T.
AU - Larcarac, V.
AU - Estebe, B.
PY - 2009
Y1 - 2009
N2 - For many applications the optimisation of natural convection cooling is a major design consideration due to factors such as weight, accessibility, cost and power consumption. In aircraft wing compartments, natural convection is the dominant mode of heat transfer due to high wall temperatures resulting from solar loading and heat dissipating internal electronics. This paper investigates the flow structures in a leading edge compartment subject to various thermal boundary conditions. The experimental configuration consisted of two leading edge enclosures; the first is a single compartment while the second has an attached wing box. Particle image velocimetry (NV) was employed to obtain velocity measurements of the flow in both leading edge enclosures. The second compartment investigated the effect of an adjacent fluid filled enclosure on the flow regime in the leading edge compartment. Higher local velocities were found in the second compartment due to an increase in buoyancy forces resulting from a lower of the average fluid temperature within the compartment. The introduction of a heat dissipating component gave rise to two separate convection structures and in general increased the fluctuations in the both temperature and velocities within the compartment.
AB - For many applications the optimisation of natural convection cooling is a major design consideration due to factors such as weight, accessibility, cost and power consumption. In aircraft wing compartments, natural convection is the dominant mode of heat transfer due to high wall temperatures resulting from solar loading and heat dissipating internal electronics. This paper investigates the flow structures in a leading edge compartment subject to various thermal boundary conditions. The experimental configuration consisted of two leading edge enclosures; the first is a single compartment while the second has an attached wing box. Particle image velocimetry (NV) was employed to obtain velocity measurements of the flow in both leading edge enclosures. The second compartment investigated the effect of an adjacent fluid filled enclosure on the flow regime in the leading edge compartment. Higher local velocities were found in the second compartment due to an increase in buoyancy forces resulting from a lower of the average fluid temperature within the compartment. The introduction of a heat dissipating component gave rise to two separate convection structures and in general increased the fluctuations in the both temperature and velocities within the compartment.
UR - http://www.scopus.com/inward/record.url?scp=70349123822&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:70349123822
SN - 9780791848487
T3 - 2008 Proceedings of the ASME Summer Heat Transfer Conference, HT 2008
SP - 281
EP - 291
BT - 2008 Proceedings of the ASME Summer Heat Transfer Conference, HT 2008
T2 - 2008 ASME Summer Heat Transfer Conference, HT 2008
Y2 - 10 August 2008 through 14 August 2008
ER -