Wastewater treatment and process intensification for degradation of solvents using hydrodynamic cavitation

Pravin B. Patil, Vinay M. Bhandari, Vivek V. Ranade

Research output: Contribution to journalArticlepeer-review

Abstract

Industrial wastewater treatment for removal of small concentrations of harmful solvents is pertinent issue in many chemical and pharmaceutical industries. The present work evaluates removal of three common solvents by hydrodynamic cavitation (nominal capacity, 1m3/h). Solvent degradation of three solvents viz. octanol, dimethyl formamide and cyclohexanol was studied in the concentration range of 50-200 mg/L and for the pressure drop range of 0.5-5 bar. The vortex based cavitation device (vortex diode) was compared with that of linear flow based device (orifice). Process intensification in the form of aeration and addition oxidizing agent- hydrogen peroxide was also evaluated for synergistic effect. The vortex diode required lower pressure drop and is superior to orifice and process intensification using aeration is most effective. A reduction in TOC to the extent of 74% could be achieved for octanol (200 ppm) using aeration with cavitational yield of 1202×10−4 mg/J for vortex diode, yield ~10 times of orifice. The degradation depends on the nature of solvent and it was revealed that low values of dielectric constant (ε<10) favour degradation. The kinetics was evaluated using rate model based on per-pass degradation factor. The process techno-economic feasibility is useful in industrial wastewater treatment.

Original languageEnglish
Article number108485
JournalChemical Engineering and Processing: Process Intensification
Volume166
DOIs
Publication statusPublished - Sep 2021

Keywords

  • Cavitation
  • Effluent
  • Organics removal
  • Oxidation
  • Pollution

Fingerprint

Dive into the research topics of 'Wastewater treatment and process intensification for degradation of solvents using hydrodynamic cavitation'. Together they form a unique fingerprint.

Cite this